Saturday, June 4, 2011

Flexible Modeling with PyDQ

A while back I ran into a situation where I needed to model capacity on a server based upon a set of page hits into the server. Fortunately during testing it was a simple task to determine the service demand utilization of page hits and I developed a bit of Python code around the PyDQ API to create a flexible model of the system.

This bit of code pulls in a .CSV file from the command line wherein the .CSV file is defined the queueing nodes of the system and the pages and related service demands for each queueing node. The nodes are not limited to just a single system. In my particular use, I had two servers in the mix: A web server on the front end and a back-end database server.

Example model.CSV file:

1:  workstream  ,coefficient,s1.cpu ,s1.nic.sent,s1.nic.recv,dat.cpu
2: somePageA.jsp,0.1 ,0.029 ,0.01296 ,0.0000599 ,0.00137853
3: somePageB.jsp,0.8 ,0.00725,0.00324 ,0.0000599 ,0.000981735
4: somePageC.jsp,0.1 ,0.00525,0.01324 ,0.0000599 ,0
.000981735

workstream is the name of the pages that will be hitting the system.
coefficient is the coefficient of pages that will be hitting the system based upon arrival rate. In the example above, if the arrival rate of page hits is 100 pages per second, 10 hits per second will be attributed to somePageA.jsp, 80 page hits per second to somePageB.jsp and finally, the remaining 10 hits per second to somePageC.jsp.

The rest of the columns define the service demand utilization for identified queueing nodes such as CPU, NICs, etc.

The code will crunch the numbers and find the maximum arrival rate for requests in the pre-defined ratios and then will generate .PNG graphs along with .CSV output. The graphs do a good job of letting management type folks what the system will be doing under load. I found the real response times of the system in question to be very close to the PyDQ analyzed numbers.

Response times per page by total arrival rate into the system:


Queueing node utilization by total arrival rate into the system:



And finally, the Python code itself:

1:  #!/usr/bin/python  
2:
3: from pylab import *
4: import pdq
5: import sys
6:
7: # Load the model workload .CSV file
8:
9: workLoadFile = open(sys.argv[1], 'r')
10:
11: serviceDemandByPage = {}
12: serverQueues = []
13:
14: lineCount = 0
15:
16: for inputLine in workLoadFile:
17: inputLine = inputLine.rstrip('\r\n')
18: workLoadElements = inputLine.split(',')
19:
20: if (lineCount == 0):
21: serverQueues = workLoadElements[2:len(workLoadElements)]
22: else:
23: serviceDemand = []
24: workLoadName = workLoadElements[0]
25: coefficient = workLoadElements[1]
26: serviceDemandValues = workLoadElements[2:len(workLoadElements)]
27:
28: for s in serviceDemandValues:
29: s = float(s)
30: serviceDemand.append(s)
31:
32: serviceDemandByPage[workLoadName] = {}
33: serviceDemandByPage[workLoadName]['%'] = float(coefficient)
34:
35: for queueName in serverQueues:
36: serviceDemandByPage[workLoadName][queueName] = serviceDemand[serverQueues.index(queueName)]
37:
38: lineCount = lineCount + 1
39:
40: # Initial model settings
41:
42: workLoadMatrix = []
43:
44: for workLoadName in serviceDemandByPage.keys():
45: workLoadMatrix.append([serviceDemandByPage[workLoadName]['%'], workLoadName])
46: del(serviceDemandByPage[workLoadName]['%'])
47:
48: workingData = {}
49: finalResults = {}
50:
51: arrivalRate = 0.1
52:
53: contLoop = True
54:
55: while contLoop:
56:
57: workLoadArray = []
58: workingData[arrivalRate] = {}
59:
60: pdq.Init("arrivalRate = %f" % arrivalRate)
61:
62: for queueName in serverQueues:
63: pdq.CreateNode(queueName, pdq.CEN, pdq.FCFS)
64:
65: for workLoad in workLoadMatrix:
66:
67: coefficient = workLoad[0]
68: pageName = workLoad[1]
69:
70: workLoadName = pageName
71:
72: workLoadArray.append([workLoadName, coefficient])
73:
74: workingData[arrivalRate][workLoadName] = {}
75:
76: workLoadLambda = coefficient * arrivalRate
77:
78: pdq.streams = pdq.CreateOpen(workLoadName, workLoadLambda)
79: pdq.SetWUnit("Hits")
80: pdq.SetTUnit("Seconds")
81:
82: for queueName in serverQueues:
83: totalServiceDemand = serviceDemandByPage[workLoadName][queueName]
84: workingData[arrivalRate][workLoadName][queueName] = 0
85: pdq.SetDemand(queueName, workLoadName, totalServiceDemand)
86:
87: pdq.Solve(pdq.CANON)
88:
89: for workLoad in workLoadArray:
90: workLoadName = workLoad[0]
91: for queueName in serverQueues:
92: workingData[arrivalRate][workLoadName][queueName] = pdq.GetUtilization(queueName, workLoadName, pdq.TRANS)
93:
94: for workLoadData in workLoadArray:
95: workLoadName = workLoadData[0]
96: coefficient = workLoadData[1]
97: workingData[arrivalRate][workLoadName]['R'] = pdq.GetResponse(pdq.TRANS, workLoadName)
98: workingData[arrivalRate][workLoadName]['%'] = coefficient
99:
100: for queueName in serverQueues:
101: queueTotal = 0.0
102: for workLoad in serviceDemandByPage.keys():
103: queueTotal += workingData[arrivalRate][workLoad][queueName]
104: if queueTotal > 0.99:
105: contLoop = False
106:
107: arrivalRate += 0.1
108:
109: for arrivalRate in sorted(workingData.keys()):
110:
111: finalResults[arrivalRate] = {}
112: finalResults[arrivalRate]['R'] = {}
113: finalResults[arrivalRate]['%'] = {}
114:
115: arrivalData = workingData[arrivalRate]
116:
117: workLoadArray = []
118:
119: for queueName in serverQueues:
120: finalResults[arrivalRate][queueName] = {}
121: rho = 0
122: for workLoad in arrivalData.keys():
123: rho = rho + arrivalData[workLoad][queueName]
124: workLoadArray.append(workLoad)
125: finalResults[arrivalRate][queueName]['rho'] = rho
126:
127: for workLoad in workLoadArray:
128: finalResults[arrivalRate]['R'][workLoad] = arrivalData[workLoad]['R']
129: finalResults[arrivalRate]['%'][workLoad] = arrivalData[workLoad]['%']
130:
131: # .CSV output
132:
133: arrivalRateArray = []
134: queueUtilization = {}
135: responseTimes = {}
136:
137: reportHeader = "lambda"
138:
139: for queueName in serverQueues:
140: reportHeader = reportHeader + ",%s" % queueName
141:
142: for workLoad in workLoadMatrix:
143: reportHeader = reportHeader + ",%s" % workLoad[1]
144:
145: print reportHeader
146:
147: for arrivalRate in sorted(finalResults.keys()):
148: arrivalRateArray.append(arrivalRate)
149: outputLine = "%0.3f" % arrivalRate
150:
151: for queueName in serverQueues:
152: outputLine = outputLine + ",%0.3f" % finalResults[arrivalRate][queueName]['rho']
153: if not queueUtilization.has_key(queueName):
154: queueUtilization[queueName] = []
155: queueUtilization[queueName].append(finalResults[arrivalRate][queueName]['rho'])
156:
157: for workLoad in finalResults[arrivalRate]['R'].keys():
158: if not responseTimes.has_key(workLoad):
159: responseTimes[workLoad] = []
160: responseTimes[workLoad].append(finalResults[arrivalRate]['R'][workLoad])
161: outputLine = outputLine + ",%0.3f" % finalResults[arrivalRate]['R'][workLoad]
162:
163: print outputLine
164:
165: # graph output
166:
167: F = gcf()
168: dpi = F.get_dpi()
169: xInches = 1024 / dpi
170: yInches = (768/2) / dpi
171:
172: rcParams['figure.figsize'] = xInches, yInches
173:
174: for queueName in serverQueues:
175: figure()
176: domain = arrivalRateArray
177: range = queueUtilization[queueName]
178: plot(domain, range, linewidth=1.0)
179: xlabel("Arrival Rate, hits per second")
180: ylabel("Utilization of %s" % queueName)
181: title("Utilization of queue %s by arrival rate" % queueName)
182: grid(True)
183: savefig("%s.utilization.png" % queueName)
184:
185: figure()
186:
187: for queueName in serverQueues:
188: domain = arrivalRateArray
189: range = queueUtilization[queueName]
190: plot(domain, range, label="%s" % queueName, linewidth=1.0)
191: xlabel("Arrival Rate, hits per second")
192: ylabel("Utilization")
193: title("Utilization of queues by arrival rate")
194: grid(True)
195:
196: legend(loc=2)
197: savefig("utilization.by.arrival.rate.png")
198:
199: for workLoad in workLoadMatrix:
200: figure()
201: domain = arrivalRateArray
202: range = responseTimes[workLoad[1]]
203: plot(domain, range, linewidth=1.0)
204: xlabel("Arrival Rate, hits per second")
205: ylabel("Response Time, seconds, for %s" % workLoad[1])
206: title("Response Time for %s by arrival rate" % workLoad[1])
207: grid(True)
208: savefig("%s.response.time.png" % workLoad[1])
209:
210: figure()
211:
212: for workLoad in workLoadMatrix:
213: domain = arrivalRateArray
214: range = responseTimes[workLoad[1]]
215: plot(domain, range, label="%s" % workLoad[1], linewidth=1.0)
216: xlabel("Arrival Rate, hits per second")
217: ylabel("Response Times, seconds")
218: title("Response Times by arrival rate")
219: grid(True)
220:
221: legend(loc=2)
222: savefig("response.times.by.arrival.rate.png")
223:

No comments:

Post a Comment